Современные методы прогнозирования динамики опасных факторов пожара. Исходные понятия и общие сведения о методах прогнозирования офп в помещениях

Совокупность этих зависимостей составляет суть динамики ОФП.

При рассмотрении воздействия ОФП на людей используются так называемые предельно допустимые значения (ПДЗ) параметров состояния среды в зоне пребывания людей. ПДЗ ОФП получены в результате обширных медико-биологических исследований, в процессе которых установлен характер воздействия ОФП на людей, в зависимости от значений их количественных характеристик.

Так, например, установлено, что если концентрация кислорода уменьшается вдвое по сравнению с нормальной концентрацией его в воздухе (составляет 23% т.е. приблизительно 270 г. О 2 в м 3 воздуха) , т.е. будет составлять 135 г О 2 в м 3 воздуха, то нарушается деятельность сердечно-сосудистой системы и органов дыхания человека, а также он теряет способность реальной оценки событий. При уменьшении концентрации кислорода в 3 раза – останавливается дыхание и через 5 минут останавливается работа сердца (Руководство по борьбе за живучесть подводной лодки)

Следует отметить, что в условиях пожара имеет место одновременное воздействие на человека всех ОФП. Вследствие этого опасность многократно увеличивается. Предельно допустимые значения ОФП указаны в ГОСТ 12.1.004-91.

Далее рассмотрим воздействие ОФП на элементы конструкций и оборудование термическое воздействие пожара на них. Например, при оценке воздействия пожара на железобетонные конструкции применяется понятие критического значения температуры арматуры этих конструкций. Обычно считается, что при нагревании арматуры до температуры, равный 400-450 0 С, происходит разрушение железобетонной конструкции.

Следующее, металла открытой металлической конструкции (л.марта, регилей кран.балки и т.д.) – при температуре 900 0 С через 15 минут.

При оценке воздействия пожара на остекление предполагается, что при температуре газовой среды в помещении, равной 300-350 0 С будет происходить разрушение остекления.

А скорость роста температуры в кабельных помещениях (условно и в подвалах) по опытным данным составляет в среднем 35-50 0 в минуту.

Современные научные методы прогнозирования ОФП основываются на математическом моделировании, т.е. на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещениях в течение суток, а также изменение параметров состояния ограждающих конструкций и оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекает из фундаментальных законов природы – первого закона термодинамики, закона сохранения массы и закона импульса.

Эти уравнения отражают и увязывают всю совокупность взаимосвязанных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделения в пламенной зоне, выделение и распространение токсичных газов, газообмен помещений с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.



Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара и делятся на три класса (три вида) : интегральные, зонные, полевые (дифференциальные).

Интегральная модель пожара позволяет получить информацию, т.е. сделать прогноз, о средних значениях параметров состояния среды в помещении для любого момента развития пожара.

Зонная модель позволяет получить информацию о размерах характерных зон, возникающих при пожаре в помещениях и средних параметров состояния среды в этих зонах.

Полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.

Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах пожара.

В математическом отношении три вышеуказанных вида моделей пожара характеризуются разным уровнем сложности. Наиболее сложной в математическом отношении является полевая модель.

Вывод по лекции: Следует подчеркнуть, что основные дифференциальные уравнения всех названных математических моделей пожара вытекают из неопровержимых фундаментальных законов природы.

Интегральная математическая модель пожара представляет собой систему обыкновенных дифференциальных уравнений, описывающих изменение среднеобъёмных параметров состояния газовой среды в помещении в процессе развития пожара. Они следуют из фундаментальных законов природы? первого закона термодинамики для открытой термодинамической системы и закона сохранения массы. Впервые интегральная модель была сформулирована профессором Ю.А. Кошмаровым в 1976 году.

Более подробно интегральная модель пожара описана в приложении 6 к приказу МЧС России от 30.06.2009 №382.

Ограничения интегральной модели

Интегральная модель применима в случае, когда состояние газовой среды с достаточной степенью достоверности можно считать одинаковым по всему объему помещения. Такое допущение справедливо, если модель содержит:

достаточно большой источник пожара;

относительно небольшой объем помещений;

хороший газообмен внутри помещений, обеспечивающий равномерное перемешивание продуктов горения.

Таким образом, интегральную модель можно применять при следующих условиях:

для зданий, содержащих развитую систему помещений малого объема простой геометрической конфигурации;

для помещений, где характерный размер очага пожара соизмерим с характерными размерами помещения и размеры помещения соизмеримы между собой (линейные размеры помещения отличаются не более чем в 5 раз);

для предварительных расчетов с целью выявления наиболее опасного сценария пожара.

Если один из линейных размеров помещения более чем в пять раз превышает хотя бы один из двух других линейных размеров, необходимо это помещение делить на участки, размеры которых соизмеримы между собой, и рассматривать участки как отдельные помещения, сообщающиеся проемами, площадь которых равна площади сечения на границе участков. Использование аналогичной процедуры в случае, когда два линейных размера превышают третий более чем в 5 раз, не допускается.

Зонная модель позволяет получить информацию о размерах характерных зон, возникающих при пожаре в помещениях и средних параметров состояния среды в этих зонах.

Зонные математические модели в основном используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой лекции рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения. Процесс развития пожара можно представить следующим образом. После воспламенения горючих веществ образующиеся газообразные продукты устремляются вверх, образуя над очагом горения конвективную струю. Достигнув потолка помещения, эта струя растекается, образуя припотолочный слой задымленного газа. В течение времени толщина этого слоя увеличивается. 1. Постановка задачи о зонном моделировании. В соответствии с вышесказанным в объеме помещения можно выделить три характерные зоны: конвективную колонку над очагом пожара, припотолочный слой нагретого газа и воздушную зону с практически неизменными параметрами состояния, равными своим начальным значениям. Математическая модель пожара, базирующаяся на разбиении пространства на характерные области, получила название трехзонной модели.

В дальнейшем ограничимся рассмотрением первой фазы начальной стадии пожара. Под понятием "первая фаза начальной стадии пожара" подразумевается отрезок времени, в течение которого нижняя граница припотолочного слоя, непрерывно опускаясь, достигает верхнего края дверного проема. При первой фазе начальной стадии пожара нагретые газы лишь накапливаются в припотолочной зоне. При второй фазе нижняя граница II зоны расположена ниже верхнего края дверного проема. С наступлением второй фазы начинается процесс истечения нагретых газов из помещения через дверной проем. До наступления этой фазы имеет место лишь вытеснение (через дверной проем) холодного воздуха из III зоны.

Полевая (дифференциальная) модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения.

Полевая дифференциальная модель. Интегральная модель пожара позволяет получить информацию о средних значениях параметров среды в помещении для любого момента развития пожара. Зонная модель позволяет получить представление о размерах характерных зон, возникающих при пожаре в помещении, а также о средних параметрах состояния среды внутри этих зон. И наконец, полевая дифференциальная модель позволяет рассчитать для любого момента развития пожара значение всех локальных параметров состояния в любой точке пространства помещения. Все три модели в математическом отношении характеризуются различным уровнем сложности. Наиболее просто реализуемой является интегральная модель, она же является и наименее точной. Наиболее перспективной, с точки зрения, практического применения является полевая модель горения.

Полевые модели основываются на системе дифференциальных уравнений в частных производных. Результатами решения данной системы уравнений являются поля распределения температур, скоростей, концентраций компонентов газовой среды в каждый момент времени. Программа FDS (Fire Dynamics Simulator) реализует вычислительную гидродинамическую модель (CFD) тепломассопереноса при горении. FDS решает уравнения Навье-Стокса для низкоскоростных температурно-зависимых потоков. Базовым алгоритмом является определенная схема использования метода предиктора-корректора второго порядка точности по координатам и времени.

Турбулентность выполняется с помощью модели Смагоринского «Масштабное моделирование вихрей». Главным образом нас интересует начальный момент времени пожара, когда срабатывание автоматической пожарной сигнализации еще может привести к выполнению системой своих целевых функций (эвакуация людей, эффективное пожаротушение). Время это относительно мало, и в этот промежуток времени пожар имеет некоторые особенности, позволяющие еще более упростить математическую модель. Основной особенностью данного процесса является отсутствие газообмена помещения с окружающей средой.

Поступление воздуха в помещение из окружающей среды отсутствует, и динамика возгорания диктуется исключительно пожарной нагрузкой. Поэтому полевая модель пожара, рассматриваемая в данной работе, носит ограниченный характер по времени и справедлива исключительно в начальный момент развития пожара, пока отсутствует поступление воздуха в помещение,

Перечисленные модели отличаются друг от друга объемом той информации, которую они могут дать о состоянии газовой среды в помещении и взаимодействующих с нею конструкций на разных этапах пожара.

В математическом отношении три вышеуказанных вида моделей пожара характеризуются разным уровнем сложности. Наиболее сложной в математическом отношении является полевая модель.

опасный пожар прогнозирование моделирование

КУРСОВАЯ РАБОТА

по дисциплине: Прогнозирование опасных факторов пожара

Тема: Прогнозирование опасных факторов пожара в помещении с электротехническими материалами: текстолит, карболит (доля горючего материала 12%). Вариант 77.

Программа исследовательского раздела: Исследовать развитие пожара в помещении при работе системы противодымной вентиляции. Расходы: приток – 36000 м 3 /час, вытяжка – 32000 м 3 /час. Время включения системы – 4 минут.

Выполнил: курсант факультета инженеров

пожарной безопасности,

3 курса, 101 взвода,

Н.А. Соловьев

Научный руководитель: начальник кафедры ГПН,

полковник внутренней службы,

кандидат технических наук,

Овсянников М. Ю.

Дата защиты: "___" май 2008 г.

Оценка _____________________

____________________________

(подпись научного руководителя)

Иваново 2008

Введение......................................................................................................3

1. Прогнозирование опасных факторов пожара при его свободном развитии......................................................................................................5

1.1. Исходные данные......................................................................5

1.2. Описание интегральной математической модели.................7

1.3. Результаты численной реализации математической модели.......................................................................................................11

1.4. Описание оперативной обстановки на момент прибытия подразделений пожарной охраны на пожар..................................................................................................17

2. Исследовательская работа..................................................................................................23

2.1. Исходные условия...............................................................................................23

2.2. Результаты прогнозирования ОФП и итоги исследования………………………………………………………….24

2.3. Описание оперативной обстановки на момент прибытия подразделений пожарной охраны на пожар......................................................................................................26

Заключение..............................................................................................31

Приложения..............................................................................................33

Библиография...........................................................................................35

Введение

Научно обоснованное прогнозирование динамики опасных факторов пожара (ОФП) в помещении позволяет оценить обстановку на пожаре, послужить основой экономически оптимального и эффективного уровня обеспечения пожарной безопасности людей, объектов.

Методы математического моделирования пожара не только позволяют предсказать «будущее» развития пожара, но и восстановить картину уже происшедшего пожара, т.е. увидеть «прошлое», - провести экспертизу пожара при его расследовании.

Цель курсовой работы заключается в исследовании развития пожара в помещении, как при его свободном развитии, так и при определённом воздействии на пожар, т.е. изменении различных условий его развития.

Для достижения поставленных целей необходимо решить следующие задачи:

Определить:

Динамику опасных факторов пожара, изменения площади горения, координат плоскости равных давлений за весь период его развития (до τ = 120 мин, если горение не прекратилось раньше);

Время и значение максимальной температуры в помещении;

Время вскрытия оконных проёмов;

Критическую продолжительность пожара по достижению каждым из ОФП своих критических значений;

Необходимое время эвакуации из помещения;

Время достижения пороговых значений для оборудования, конструкций;

Оперативную обстановку на момент прибытия подразделений пожарной охраны на пожар (τ = 12мин) и подачи первых стволов на тушение τ = 20 мин.);

Для исследовательской части определить:

Влияние вентиляции на основные параметры развития ОФП, в сравнении со свободным развитием.

Пути и средства достижения поставленных целей.

Для проведения научно обоснованного прогноза, используется интегральная математическая модель пожара, для заданных условий однозначности (характеристик помещения, горючей нагрузки и т.д.) путём решения системы дифференциальных уравнений.

Получить аналитическое решение системы обыкновенных дифференциальных уравнений интегральной модели пожара в общем случае невозможно.

Достижение поставленных целей в прогнозировании ОФП в помещении возможно лишь путём численного решения системы дифференциальных уравнений пожара. Для изучения динамики ОФП служит компьютерный эксперимент, т.е. получение численного решения при помощи современных ЭВМ.

Для численной реализации математической модели используется программа INTMODEL, разработанная на кафедре «Инженерной теплофизики и гидравлики» Академии ГПС МЧС России.

Прогнозирование опасных факторов пожара при его свободном развитии.

Исходные данные.

Помещение для1-2 степени огнестойкости расположено в одноэтажном здании. Стены здания кирпичные, толщиной 630 мм, покрытие железобетонное, толщиной 100 мм. Полы деревянные. Вентиляция механическая приточно-вытяжная. При возникновении пожара отключается автоматически. Отопление центральное водяное. Противодымная защита помещения отсутствует.

К зданию пристроено складское помещение, отделённое от помещения с керосином противопожарной стеной первого типа.

Помещение имеет следующие размеры:

Длину a =10 м;

Ширину b = 8 м;

Высоту 2h = 3 м.

В наружных стенах здания по его длине расположены оконные проёмы по 2 с каждой стороны. Размерами 2,0 х 2,0 м. Окна расположены на высоте от пола до нижних краёв проёмов 0,5 м. Следовательно, координаты расположения нижних и верхних краёв оконных проёмов будут y н =0,5 и y в =2,5м соответственно. Суммарная ширина оконных проёмов 8 м.

Оконные проёмы остеклены листовым оконным стеклом. Остекление разрушается при среднеобъемной температуре газовой среды в помещении – T ок. = 300 ° С.

Двери эвакуационных выходов из помещения во время пожара открыты для эвакуации. Ширина двери – 0,8 м, высота –1,9 м, т.е. и м. Суммарная ширина дверных проёмов м.

Электротехнические материалы: текстолит, карболит (доля горючего материала 12%).

Площадь пола занятая горючим материалом составляет

где - площадь пола помещения, м 2 .

Общее количество материала пожарной нагрузки помещения , кг (масса материала) при , кг/м 2 находится по формуле

где - масса горючего материала на одном квадратном метре площади пола, занятой горючим материалом (), кг/м 2 .

Твёрдый горючий материал занимает площадку прямоугольной формы. Размеры сторон прямоугольника и определены из выражений


Интегральная модель пожара
Зонная модель пожара

Общие сведения о расчете пожаров. Опасные факторы пожара.

Расчет пожара (прогнозирование опасных факторов) необходим для оценки своевременности эвакуации и разработке мероприятий по ее совершенствованию, при создании и совершенствовании систем сигнализации, оповещения и тушения пожаров, при разработке планов пожаротушения (планирования боевых действий пожарных подразделений при пожаре), для оценки фактических пределов огнестойкости, проведении пожарно-технических экспертиз и других целей.
В развитии пожара в помещении обычно выделяют три стадии:
- начальная стадия - от возникновения локального неконтролируемого очага горения до полного охвата помещения пламенем; при этом средняя температура среды в помещении имеет не высокие значения, но внутри и вокруг зоны горения температура такова, что скорость тепловыделения выше скорости отвода тепла из зоны горения, что обуславливает само ускорение процесса горения;
- стадия полного развития пожара - горят все горючие вещества и материалы, находящиеся в помещении; интенсивность тепловыделения от горящих объектов достигает максимума, что приводит и к быстрому нарастанию температуры среды помещения до максимальных значений;
- стадия затухания пожара - интенсивность процесса горения в помещении снижается из-за расходования находящейся в нём массы горючих материалов или воздействия средств тушения пожара.
Однако в любом случае, как показывает уравнение «стандартного пожара», температура в очаге пожара через 1,125 мин достигает значения 365оС. Поэтому очевидно, что возможное время эвакуации людей из помещений не может превосходить продолжительности начальной стадии пожара.
В начальной стадии развития пожара опасными для человека факторами являются: пламя, высокая температура, интенсивность теплового излучения, токсичные продукты горения, дым, снижение содержания кислорода в воздухе, поскольку при достижении определённых уровней они поражают его организм, особенно при синергическом воздействии.
Исследованиями отечественных и зарубежных учёных установлено, что максимальная температура, кратковременно переносимая человеком в сухой атмосфере, составляет 149 0С, во влажной атмосфере вторую степень ожога вызывало воздействие температуры 55 0С в течение 20с и 70 0С при воздействии в течение 1с; а плотность лучистых тепловых потоков 3500 вт/м2 вызывает практически мгновенно ожоги дыхательных путей и открытых участков кожи; концентрации токсичных веществ в воздухе приводят к летальному исходу: окиси углерода (СО) в 1,0% за 2-3 мин, двуокиси углерода (СО2) в 5% за 5 мин., цианистого водорода (HCN) в 0,005% практически мгновенно; при концентрации хлористого водорода (HCL) 0,01- 0,015% останавливается дыхание; при снижении концентрации кислорода в воздухе с 23% до 16% ухудшаются двигательные функции организма, и мускульная координация нарушается до такой степени, что самостоятельное движение людей становится невозможным, а снижение концентрации кислорода до 9% приводит к смерти через 5 минут.
Совместное действие некоторых факторов усиливает их воздействие на организм человека (синергический эффект). Так токсичность окиси углерода увеличивается при наличии дыма, влажности среды, снижении концентрации кислорода и повышении температуры. Синергетический эффект обнаруживается и при совместном действии двуокиси азота и понижении концентрации кислорода при повышенной температуре, а также при совместном воздействии цианистого водорода и окиси углерода.
Особое воздействие на людей оказывает дым. Дым представляет собой смесь несгоревших частиц углерода с размерами частиц от 0,05 до 5,0 мкм. На этих частицах конденсируются токсичные газы. Поэтому воздействие дыма на человека также имеет, по-видимому, синергический эффект.
В действительности при пожаре выделяется значительно больше токсинов, воздействие которых достаточно хорошо изучено (табл. 1,2). Максимально допустимый уровень опасных (основных) факторов пожара, воздействие которого не приносит вреда человеку (табл.3), нормирован. Вырываясь из помещения, опасные факторы пожара, прежде всего дым, стремительно распространяются по коммуникационным путям здания.

Источники. 1-4, 6 - ГОСТ 12.1.004-91; 5 - ГОСТ 12.3.047-98; 7 - Кошмаров Ю. А. Прогнозирование опасных факторов пожара в помещении: Учеб. пособие. - М.: Академия ГПС МВД РФ, 2000.

Для прогнозирования опасных факторов пожара в настоящее время используются интегральные (прогноз средних значений параметров состояния среды в помещении для любого момента развития пожара), зонные (прогноз размеров характерных пространственных зон, возникающих при пожаре в помещении и средних значений параметров состояния среды в этих зонах для любого момента развития пожара. Примеры зон - припотолочная область, восходящий на очагом горения поток нагретых газов и область незадымленной холодной зоны) и полевые (дифференциальные) модели пожара (прогноз пространственно-временного распределения температур и скоростей газовой среды в помещении, концентраций компонентов среды, давлений и плотностей в любой точке помещения).
Для проведения расчетов, необходимо проанализировать следующие данные:
- объемно-планировочных решений объекта;
- теплофизических характеристик ограждающих конструкций и размещенного на объекте оборудования;
- вида, количества и расположения горючих материалов;
- количества и вероятного расположения людей в здании;
- материальной и социальной значимости объекта;
- систем обнаружения и тушения пожара, противодымной защиты и огнезащиты, системы обеспечения безопасности людей.
При этом учитывается:
- вероятность возникновения пожара;
- возможная динамика развития пожара;
- наличие и характеристики систем противопожарной защиты (СППЗ);
- вероятность и возможные последствия воздействия пожара на людей, конструкцию здания и материальные ценности;
- соответствие объекта и его СППЗ требованиям противопожарных норм.

Далее необходимо обосновать сценарий развития пожара. Формулировка сценария развития пожара включает в себя следующие этапы:
- выбор места расположения первоначального очага пожара и закономерностей его развития;
- задание расчетной области (выбор рассматриваемой при расчете системы помещений, определение учитываемых при расчете элементов внутренней структуры помещений, задание состояния проемов);
- задание параметров окружающей среды и начальных значений параметров внутри помещений.

Интегральная модель пожара

Интегральная математическая модель пожара описывает в самом общем виде процесс изменения во времени состояния газовой среды в помещении.
С позиций термодинамики газовая среда, заполняющая помещение с проемами (окна, двери и т.п.), как объект исследования есть открытая термодинамическая система. Ограждающие конструкции (пол, потолок, стены) и наружный воздух (атмосфера) является внешней средой по отношению в этой термодинамической системе. Эта система взаимодействует с внешней средой путем тепло- и массообмена. В процессе развития пожара через одни проемы выталкивается из помещения нагретые газы, а через другие поступает холодных воздух. Количество вещества, т.е. масса газа в рассматриваемой термодинамической системе, в течении времени изменяется. Поступление холодного воздуха обусловлено работой проталкивания, которую совершает внешняя среда. Термогазодинамическая система в свою очередь совершает работу, выталкивая нагретые газы во внешнюю атмосферу. Эта термодинамическая система взаимодействует также с ограждающими конструкциями путем теплообмена. Кроме того, в эту систему с поверхности горящего материала (т.е. из пламенной зоны) поступает вещество в виде газообразных продуктов горения.
Состояние рассматриваемой термодинамической системы изменяется в результате взаимодействия с окружающей средой. В интегральном методе описания состояния термодинамической системы, коей является газовая среда в помещении, используются «интегральные» параметры состояния - такие, как масса всей газовой среды и ее внутренняя тепловая энергия. Отношение этих двух интегральных параметров позволяет оценивать в среднем степень нагретости газовой среды. В процесс развития пожара, значения указанных интегральных параметров состояния изменяются.

Зонная модель пожара

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы - законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ.
В зонной математической модели газовый объем помещения разбивается на характерных зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала.
Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка, припотолочный слой и зона холодного воздуха, рис. 1.

Рисунок 1.

В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена:
- среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении;
- нижнюю границу нагретого задымленного припотолочного слоя;
- распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси;
- массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы;
- тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы;
- температуры (температурных полей) ограждающих конструкций;
Математический аппарат модели изложен в научно-методических пособиях, приведенных в разделе «Литература» настоящего раздела.

Полевой (дифференциальный) метод расчета

Полевой метод является наиболее универсальным из существующих детерминистических методов, поскольку он основан на решении уравнений в частных производных, выражающих фундаментальные законы сохранения в каждой точке расчетной области. С его помощью можно расчитать температуру, скорость, скорость, концентрации компонентов смеси и т.п.в каждой точки расчетной области, см. рис. 2. В связи с этим полевой метод может использоваться:
. для проведения научных исследований в целях выявления закономерностей развития пожара;
. для проведения сравнительных расчетов в целях апробации и совершенствования менее универсальных и зональных и интегральных моделей, проверки обоснованности и их применения;
. Выбора рационального варианта противопожарной защиты конкретных объектов:
. моделирования распространения пожара в помещениях высотой более 6м.

Рис. 2. Расчеты с помощью полевой модели.

В своей основе полевой метод не содержит никаких априорных допущений о структуре течения, и связи с этим принципиально применим для рассмотрения любого сценарий развития пожара.
Вместе с тем, следует отметить, что его использование требует значительных вычислительных ресурсов. Это накладывает ряд ограничений на размеры рассматриваемой системы и снижает возможность проведения многовариантных расчетов. Поэтому, интегральный и зональный методы моделирования также являются важным инструментами в оценке пожарной опасности объектов в тех случаях, когда они обладают достаточной информативностью и сделанные при их формулировке допущения не противоречат картине развития пожара.
Однако, на основе проведенных исследований, можно утверждать, что поскольку априорные допущения зонных моделей могут приводить к существенным ошибкам при оценке пожарной опасности объекта, предпочтительно использовать полевой метод моделирования в следующих случаях:
. для помещений сложной геометрической конфигурации, а также для помещений с большим количеством внутренних преград;
. помещений, в которых один из геометрических размеров гораздо больше остальных;
. помещений, где существует вероятность образования рециркуляционных течений без формирования верхнего прогретого слоя (что является основным допущением классических зонных моделей);
. в иных случаях, когда зонные и интегральные модели являютсяч недостаточно информативными для решения поставленных задач, либо есть основании считать, что развитие пожара может существенно отличаться от априорных допущений зональных и интегральных моделей пожара.

Математический аппарат модели изложен в научно-методических пособиях, приведенных в разделе «Литература» настоящего раздела.

Критерии выбора моделей пожара для расчетов

В соответствии с проектом документа «Методика оценки рисков для общественных зданий» для описания термогазодинамических параметров пожара применяются три основных группы детерминистических моделей: интегральные, зонные (зональные) и полевые.
Выбор конкретной модели расчета времени блокирования путей эвакуации следует осуществлять исходя из следующих предпосылок:
интегральный метод:
 для зданий и сооружений, содержащих развитую систему помещений малого объема простой геометрической конфигурации
 проведении имитационного моделирования для случаев, когда учет стохастического характера пожара является более важным, чем точное и детальное прогнозирование его характеристик;
 для помещений, где характерный размер очага пожара соизмерим с характерным размером помещения;

Зональный метод:
 для помещений и систем помещений простой геометрической конфигурации, линейные размеры которых соизмеримы между собой;
 для помещений большого объема, когда размер очага пожара существенно меньше размеров помещения;
 для рабочих зон, расположенных на разных уровнях в пределах одного помещения (наклонный зрительный зал кинотеатра, антресоли и т.д);

Полевой метод:
- для помещений сложной геометрической конфигурации, а также помещений с большим количеством внутренних преград (атриумы с системой галерей и примыкающих коридоров, многофункциональные центры со сложной системой вертикальных и горизонтальных связей и т.д.);
- для помещений, в которых один из геометрических размеров гораздо больше (меньше) остальных (тоннели, закрытые автостоянки большой площади и.т.д.);
- для иных случаев, когда применимость или информативность зонных и интегральных моделей вызывает сомнение (уникальные сооружения, распространение пожара по фасаду здания, необходимость учета работы систем противопожарной защиты, способных качественно изменить картину пожара, и т.д.).

Характеристика типовой пожарной нагрузки (примеры)

Здания I-II ст. огнест.; мебель+бытовые изделия
Низшая теплота сгорания, кДж/кг 13800,0
Линейная скорость пламени, м/с / Плотность ГЖ,кг/м3 0,0108
Удельная скорость выгорания, кг/м2-с 0,01450
Дымообразующая способность, Нпм2/кг 270,00
Потребление кислорода (О2), кг/кг -1,0300
Выделение газа:
углекислого (СОг), кг/кг 0,20300
угарного (СО), кг/кг 0,00220
хлористого водорода (НС1), кг/кг 0,01400

Здание I-II ст. огнест.; мебель+ткани
Низшая теплота сгорания, кДж/кг 14700,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3. 0,0108
Удельная скорость выгорания, кг/м2с 0,01450
Дымообразуюшая способность, Нпм2/кг. ...82,00
Потребление кислорода (O2), кг/кг -1,4370
Выделение газа:
углекислого (СО2). кг/кг...... 1,28500
угарного (СО), кг/кг 0,00220
хлористого водорода (НС1), кг/кг. 0,00600

Обществ.здания; мебель+линолеум ПВХ (0,9+0,1)
Низшая теплота сгорания, кДж/кг 14000,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,015
Удельная скорость выгорания, кг/м2с.-. 0,01370
Дымообразуюшая способность, Нпм2/кг 47,70
Потребление кислорода (Ог), кг/кг -1,3690
Выделение газа:
углекислого (СО2), кг/кг 1,47800
угарного (СО), кг/кг 0,03000
хлористого водорода (НС1), кг/кг.. 0,00580

Библиотеки, архивы; книги, журналы на стеллажах
Низшая теплота сгорания, кДж/кг 14500,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0103
Удельная скорость выгорания, кг/м2с 0,01100
Дымообразуюшая способность, Нпм2/кг 49,50
Потребление кислорода (О2), кг/кг -1,1540
Выделение газа:
углекислого (СО2), кг/кг 1,10870
угарного (СО), кг/кг 0,09740
хлористого водорода (НС1), кг/кг. .0,00000

Верхняя одежда; ворс, ткани (шерсть+нейлон)
Низшая теплота сгорания, кДж/кг 23300,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0835
Удельная скорость выгорания, кг/м2-с 0,01300
Дьшообразуюшая способность, Нпм2/кг 129,00
Потребление кислорода (О2), кг/кг -3,6980
Выделение газа:
углекислого (СО2), кг/кг 0,46700
угарного (СО), кг/кг 0,01450
хлористого водорода (HС1), кг/кг 0,00000

Резинотехн. изделия; резина, изделия из нее
Низшая теплота сгорания, кДж/кг 36000,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3.... 0,0184
Удельная скорость выгорания, кг/м2-с 0,01120
Дымообразуюшая способность, Нп м2/кг 850,00
Потребление кислорода (О2), кг/кг -2,9900
Выделение газа:
углекислого (СО2), кг/кг 0,41600
угарного (СО), кг/кг.. 0,01500
хлористого водорода (НС1), кг/кг 0,00000

Автомобиль; 0,3*(резина, бензин)+0,15*(ППУ, искожа ПВХ)+0,1* эмаль
Низшая теплота сгорания, кДж/кг 31700,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,0068
Удельная скорость выгорания, кг/м2 с 0,02330
Дымообразуюшая способность, Нп м2/кг 487,00
Потребление кислорода (О2), кг/кг. -2,6400
Выделение газа:
углекислого (СО2), кг/кг 1,29500
угарного (СО), кг/кг 0,09700

Кабинет; мебель+бумага (0,75+0,25)
Низшая теплота сгорания, кДж/кг.14002,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/м3 0,042
Удельная скорость выгорания, кг/м2с.0,01290
Дымообразуюшая способность, Нпм2/кг.. 53,00
Потребление кислорода (О2), кг/кг. .-1,1610
Выделение газа:
углекислого (СО2), кг/кг...0,64200
угарного (СО), кг/кг....... 0,03170
хлористого водорода (НС1), кг/кг. , 0,00000

Помещение, облицованное панелями; панели ДВП
Низшая теплота сгорания, кДж/кг 18100,0
Линейная скорость пламени, м/с / Плотность ГЖ, кг/мЗ 0,0405
Удельная скорость выгорания, кг/м2с 0,01430
Дымообразуюшая способность, Нпм2/кг 130,00
Потребление кислорода (О2), кг/кг -1,1500
Выделение газа:
углекислого (СО2), кг/кг 0,68600
угарного (СО), кг/кг 0,02150
хлористого водорода (НС1), кг/кг.... г.. 0,00000

Литература

Федеральный закон РФ от 22 июля 2008 г. № 123-ФЗ «Технический регламент о требованиях пожарной безопасности».
ГОСТ 12.1.004-91* Пожарная безопасность. Общие требования.
ГОСТ 12.1.033-81* Пожарная безопасность. Термины и определения.
СП 118.13330.2012 Общественные здания и сооружения.
СНиП 21-01-97* Пожарная безопасность зданий и сооружений.
Холщевников В.В., Самошин Д.А. Парфененко А.П., Кудрин И.С., Истратов Р.Н., Белосхов И.Р.Эвакуация и поведение людей при пожарах: Учеб. пособие. - М.: Академия ГПС МЧС России, 2015. - 262 с.

Математические модели развития пожара в помещении описывают в самом общем виде изменения параметров состояния среды, ограждающих конструкций и элементов оборудования с течением времени. Уравнения, математических моделей пожара в помещении базируется на фундаментальных законах физики: законах сохранения массы, энергии, количества движения. Эти уравнения отражают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару – тепловыделение в результате горения, дымовыделение и изменение оптических свойств газовой среды, выделение и распространение токсичных продуктов горения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций и др. Интегральный метод моделирования основан на моделировании пожара в помещении на уровне усреднённых характеристик (среднеобъёмных параметров, которыми характеризуются условия в объёме пространства: температура, давление, состав газовой среды и т.д. для любого момента времени). Это наиболее простая в математическом отношении модель пожара. Она представлена системой обыкновенных дифференциальных уравнений. Искомыми функциями выступают среднеобъемные параметры газовой среды в помещении, а независимой переменной является время. Также бывают дифференциальные и зонные модели.

2. Прогнозирование опасных факторов пожара в помещении на основе зонной математической модели.

Зонный метод расчета динамики ОФП основан на фундаментальных законах природы – законах сохранения массы, импульса и энергии. Газовая среда помещений является открытой термодинамической системой, обменивающейся массой и энергией с окружающей средой через открытые проемы в ограждающих конструкциях помещения. Газовая среда является многофазной, т.к. состоит из смеси газов (кислород, азот, продукты горения и газификация горючего материала, газообразное огнетушащие вещество) и мелкодисперсных частиц (твердых или жидких) дыма и огнетушащих веществ. В зонной математической модели газовый объем помещения разбивается на характерные зоны, в которых для описания тепломассобмена используются соответствующие уравнения законов сохранения. Размеры и количество зон выбирается таким образом, что бы в пределах каждой из них неоднородность температурных и других полей параметров газовой среды были возможно минимальными, или из каких-то других предположений, определяемых задачами исследования и расположением горючего материала. Наиболее распространенной является трехзонная модель, в которой объем помещения разбит на следующие зоны: конвективная колонка над очагом пожара, припотолочный слой нагретого газа и зона холодного воздуха. В результате расчета по зонной модели находятся зависимости от времени следующих параметров тепломассообмена: среднеобъемных значений температуры, давления, массовых концентраций кислорода, азота, огнетушащего газа и продуктов горения, а также оптической плотности дыма и дальности видимости в нагретом задымленном припотолочном слое в помещении; нижнюю границу нагретого задымленного припотолочного слоя; распределение по высоте колонки массового расхода, осредненных по поперечному сечению колонки величин температуры и эффективной степени черноты газовой смеси; массовых расходов истечения газов наружу и притока наружного воздуха внутрь через открытые проемы; тепловых потоков, отводящих в потолок, стены и пол, а также излучаемых через проемы; температуры (температурных полей) ограждающих конструкций.

3. Прогнозирование опасных факторов пожара в помещении на основе дифференциальной математической модели. Дифференциальная математическая модель позволяет рассчитать для любого момента развития пожара значения всех локальных параметров состояния во всех точках пространства внутри помещения. Дифференциальная модель расчета тепломассообмена при пожаре состоит из системы основных дифференциальных уравнений законов сохранения импульса, массы и энергии. К основным уравнениям математической модели относятся: уравнение неразрывности газовой смеси оно является математическим выражением закона сохранения массы газовой смеси, уравнение энергии является математическим выражением закона сохранения и превращения энергии, уравнение неразрывности для компонента газовой смеси, уравнение состояния смеси идеальных газов, уравнения теплофизических параметров смеси газов учитывает химический состав смеси. К дополнительным соотношениям математической модели относятся: расчет процесса прогрева строительных конструкций (материалов стен, перекрытия, пола и колонны), расчет турбулентного тепломассобмена, расчет радиационного тепломассообмена, расчет выгорания горючей нагрузки, т.е. определение величины оставшейся массы жидкого или твердого горючего материала после частичного его выгорания, моделирование горения (моделирование области горения может осуществляться при помощи источников энергии, массы и дыма без учета химической кинетики и термогазодинамических условий в области горения).

4.Расчет критической продолжительности пожара на основе интегральной математической модели. Критическая продолжительность пожара – это время достижения предельно допустимых для человека значений ОФП в зоне пребывания людей. Формула для расчета КПП по температуре: , где Т кр – предельно допустимое значение температуры в рабочей зоне. Для расчета КПП по условию достижения концентрации кислорода в рабочей зоне своего предельно допустимого значения: . Для расчета КПП по условию достижения концентрацией токсичного газа в рабочей зоне своего предельно допустимого значения:.Для расчета КПП по потере видимости:.Эти формулы можно применять лишь для помещений с небольшими открытыми проемами.